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We consider a problem concerning the temperature existing around a radiating sphere 
situated in an infinite, homogeneous medium in which, in addition to absorption of radi- 
ation, we have molecular energy transfer. Solution is obtained under the condition that 
the radius II of the sphere is small compared with the path length 1 /a of the photons 
within the medium. At the distances from the sphere which are large compared with 

i / a the solution corresponds approximately to the radiant heat transfer. When molecu- 
lar transfer is absent in the problems on radiation, then the temperature discontinuity 
occurs at the surface of the sphere, but this is smoothed out when a finite value is assigned 
to the molecular heat transfer coefficient. If this coefficient is small compared with the 
radiant heat transfer coefficient, but their ratio exceeds considerably the value of the 
parameter an, then the temperature field near the sphere is defined solely in the terms 
of the molecular transfer. In this case the energy fIux is dominated by the molecular 
heat transfer near the sphere and by the radiant transfer away from the sphere. 

1, Basic equationa, A sphere of radius a is assumed to be a grey radiation 
source whose effective black body coefficient is e, surrounded by a radiation absorbing 
gas whose absorption coefficient is CL and the temperature away from the sphere is T, , 
Coefficient a represents the radiation absorption coefficient averaged over the whole 
spectrum and is assumed to be constant. 

Radiation intensity I (r, 6)’ is obtained from the kinetic equation which, for the sphe- 
rically symmetric case and. in the presence of a local thermodynamic equilibrium, has 
the form [l] ar - 

cos 0 a7; 

sin 6 ai 
- -- = a (I, -I) 

r a6 
where 1, = (CT / n)T* is the equilibrium radiation intensity, o is the Stefan-Boltzmann 
constant, r is the distance between the observer and the center of the sphere and 8 is 
the angle between the direction of the moving photons and the radius vector ;r. 

Let us assume that the Intensity of radiation 1, ((!I} emitted by the surface of the 
sphere is given, and that it includes the radiation emitted by the surface of the grey 

sphere of temperature T, as well as the intensity of reflected radiation, the reflection 
coefficient being equal to 1 - e 

f’, (*) = e (~/~)T*4 + (1 - E)I (a, lx - 0) (14 
At the distance from the sphere the temperature tends to its limiting value T, and 

the radiation intensity, to the thermodynamic equilibrium radiation intensity 

I-+(cr/rc)Tm4 as r-b00 U-3) 

It was shown in (21 that the solution of (1.1) with the boundary conditions (1.2) and 
(1.3) has the form 

when O<f+<~t(+=arcsina!r) 
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Radiant energy density U and the radiant energy flux density S in the radial direction 
are given, by virtue of the spherical symmetry of the problem, by 

x 
u =‘~~~si~3~Q, s=2r( (1 ~s~~~Od~ W) 

c l ‘0 
As we know [l and 31, thzequflfbrium radiant energy density V;, for the medium at 

the temperature T and in the state of thermodynamic equilibrium is equal to 4 (u t c)T’. 
Integrating the radiation transfer equation (1.1) over the solid angle, we obtain the 

continuity equation 
($-I- ;) S=acfU, -CJ) U.6) 

If molecular heat transfer takes place within the medium in addition to the radiant 
tranfer. then the law of conservation of energy implies that 

(1.7) 
where x denotes the molecular heat transfer coefficient, 

Relations (1.6) and (1.7) yield the following equation defining the temperature dfstri- 

bution in the medium 

( 

ds32d 
“P’ -r;i; T=cic(U,-fJ) 

) (1.8) 

8, Energy and radiant flux denritfsr. Expression (1,5) for the emegy 
density can be written as U=(klfi) (vi+ US-j- Us) 

* x 

( 1 

Hz 
VI = ‘Isin0d%, US = 

s 
Isin@dQ, Us== 

c 
Isfn 0 de WI 

0 ‘h 5, 
where the respective integrals are computed with the aid of Formulas (1.4). 

Following the example of fz] , we utilize the following substitution : 

sin 8 dO &A dv 

r/P” - 
-=-=--, 

rt, rssfnse W 
t!OBe= 

ra f us - p= r* f v2 - p2 

2ru = 2~V 

The integrals in (2.X) are simplfffed to: 
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$PTVPi~* dV 
Q*= - e-av - 

v dP+ 
0 

(2.11) 

(2.5) 

tq7= vrl-_ p=.l/pl-_ t= 1fjra--pa1) 
The expression for the radiant energy density has the form 

(2.6) 

The above expression unlike the one given in fl], takes into account the radiation 
reflected from the surface of the sphere. Both, however, become equivalent for the per- 
fectly black sphere (a = 1) . Similar calculations performed for the radial component 

of the flux density lead to the following results: 

(2.7) 

Since aa 4 1 by definition, we can replace, in (2.6) and (2.7)‘ eMU with; bBaf in the 

first integrals and put exp (--2at/a” - &sin%) equal to unity, Moreover, we can lump 
the terms independent .of e together ana, again using the condition ua 4 1, replace 

4u c with c~(~‘@ in the second integrals, thus obtain 
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co 

P (PI Pp (P - ?/pa 3) dP] + 

r.2 - pa 
i+U, ewUU du 3p (2.9) 

The second integral in (2.8) simplifies considerably, if the region r > a is considered, 
since in this case it is the quantities p w 1 /a that make the main contribution to- 
wards the integral. Gonsequently, the expression within the square brackets in (2.8) can 
be written as 

$(Ta4-~~T4(p)e-xPdp) 

a 

We note that at the point r = a this expression becomes 
CO 

T,’ -a 
c 

T4 (p) e-” dp 
b 

and this makes it possible to write it as 

[Ta4-ar T4 (p) emzp dp 

0 I 
(1 - 1/i -a”/@) 

This substitution is valid when r > a and when r = a. It can be assumed that the 
deviations from this formula will not be significant in the intermediate region r _ a. 

Thus we obtain the following expression for the radial energy density : 

+$$T”(p) (.e-+lp 
a Ir-PI 

(2.10) 

Analogous treatment applied to the expression for the radiant energy flux density 
results in 

&+-a’ T4 [ a -a rT4 (p) ca++] + 
a 

In the region ar 2 1 the temirature T (p) will be a slowly varying function of 
coordinates, then computing the flux and energy densities we can limit ourselves to the 
first terms of the Taylor’s expansion for T” (p) 

T” (PI = T4 (r) + (P - r)(d/cZr) T4 (r) 
and taking into account that the integrand function is different from zero only within 
the region a Ir - p 1 G 1, the lower limit of integration in p (for ar 3 1) can be 

replaced by -_oo. 
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In consequence, the radiant energy density and the radiant energy ilux density become 

u = p4w+ &fT4 (r), 
s = -gy4(r) (2.12) 

from which we see that as r + oo , the radiant energy density tends to the thermodyna- 
mically stable radiant energy density, while the radiant flux density tends to the well 

known expression for the flux in the approximation to the radiant energy transfer [S]. 
If the total energy flux 4na2S, through the surface of the sphere of radius a is given, 

then, according to (2.12). Eq, (1.12) in the region cu > 1 becomes 

(2.13) 
dir 

- x+ gTm3)&= rp %, 

and its solution 
T-TT,= 

3ra2S, x 
i6cfT,ar (1 + 3pa*) Pa = 16151’,~ (2.14) 

will be the principal asymptotic part of the solution for the exact Eq.(l.Q. 

8, Temperature field at rho dfstrnce from the surface of tho 
sphere, Let us introduce a new function cp 

T4 = T,d (f + cp), Ta” = T,b 0 + cpa) (3.1) 

Assuming cpo (( 1, we can linearize (1.8) obtaining 

p+cp=r(l +cp)-A((r-J’%-a2)e-~r- 

The integral appearing in (3.2) can be transformed as follows : 

From this we see that. when the integration over p in (3.2) is extended to the region 
0 < p < a terms of the order of CLU appear. These terms can, however, be neglected, 

since the initial Eq. (3.2) was obtained by neglecting the terms of the order of’ an. This 
is even more obvious from the fact that a more exact equation analogous to (3.2) should 
have a solution ‘p f 0. Eq. (3.2) can formally be extended over the whole region 

0 < p < oo and cp (r) defined additionally for r ( 0 by putting Q, (r) = cp (-r). 
Then the following equation can be written in the region -00 ( r ( 00: 

(3.3) 

We shall use the Fourier transformation rq 

(I b (Ii) s rip (r) i?-iA’r r/r 

--a7 

(3.4) 
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where XI (Z) is the Bessel function of an imaginary argument (i.e. the Ma&Donald 

functiun)* If 1 k 1 a 4 lfl then F (k} = _ia2 arc tg (k/a) (3.7) 

This Fourier transform corresponds formally to the function l/s {G2/r) @xP (+r) 
which is the asymptutic form of the free term of (3,3). 

Inverse Fourier uansformatfon yields 

(AP - 2ip2kaB) exp (ikr) dk 
-(a/lt)arctg(k/a) (3.8) 

Analysis shuws that the integrand functiun has, on the complex plane, one first order 

pole k = 0 and twu branch points #%F& is% In addition. this function may have poles in 

the region 1 Im k 1 > a which are roots of Ee, 

(3.9) 

If )r& < i, then (3.9) transforms on the upper semiplane, with the accuracy of up to 
the terms of the urder of p%s , into an equation whose obvious solution is 

t + g2k2 J= l/s atst / k = 0, k= i/c’~%c= (3.10) 

where the upper sign corresponds to going sround the branch point anticlockwise and the 

lower sign, to the clockwise movement. We see from (3.10) that these roots do not lie 
on the principal branch of the logarithmic cnrve. Singularities of (3.9) are distributed 
on the ‘&plane symmetrically with respect to the real axis, 

Methuds of conformal ~~f~rnatiu~ applied to the fnnctions appearing on bath sides 
uf (3.9) show, that fur any value of p the only singulatities of (3.9) are : one sedond 

order pole at the origin and two branch points k = * ia. 

The path of integration passes through the pole at k = 0, Integral (3.8) should be taken 

as a half-sum ‘of the integral along the real axis with an indentation above and below 

~~~~~~ 

a 

thepoleatk=O, The residue of this pole defines 
the behvior of the function as 1 r 1 --f CJQ. 

Parity of the function e (r) implies that the follow- 
ing condition holds : 

lim rtp (r) = - lim rrp(r) 
Rt hid r-r00 r-C‘3 

althungh it will obviously not hold. when any other 

Fig, I path of integration is chosen in the vicinity of the 
pole at k = 0. 

Sfnce the integrand function has two branch points k = F iu, a cut along the imagin- 
ary axis from ia to cv and from -ia to - CIO‘, is required in order to obtain a single- 

valued analytic branch. 
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The integral along the real axis for r > 0 is equal to the contribution of half of the 
residue at the pole k = 0 , the limit value of the integral along the following contour 
as R -P oo (Fig. l), from k = - R along the arc Rc*’ to k = iR, from k = iR along 

the imaginary axis to the left of the cut to k = ia, from k = ia along the imaginary 

axis to the right of the cut to k - iR, and ftom k = iR along the arc I@ to /c - R 
(here R denotes the radius of the circle). 

Inspecting the behavior of P (k) we see that as R -, CO , the integral along the arcs 
of radius R vanishes, and only thk integral along the axis to the left and right of the cut, 

remains. 
When f > a , then the region ) k 1 a < 1 becomes the main contributor towards the 

value of the integral. Therefore, using the asymptotic expression for (3. ‘7). we obtain 

The behavior of the fntegrand function preceding the exponential term depends essen- 
tially on the magnitude of the parameter ph2. 

Let P&a < 1, then the function in question increases sharply in the region 1 < 
< S< 1.3 due to the behavior of In (s - 1). Then it increases slowly with increasing 
S reaching the maximum at the point s zz l/pa corresponding to the minimum value 
of the denominator, which is I/, x*~%2, After that this function decreases in the region 
of the order of l/pa. 

If CW % 1, then the small neighborhood of the point 8 = 1 makes the main contri- 
bution towards the value of the integral. consequently 

and the temperature distribution, in accordance with (3.11). has the form 

rrp= 
3aa (aA + 2paB) 

2 o+ 3BW 

(3.22) 

(3.13) 

Comparing (3.13) with the temperature field obtained from the radiant energy transfer 
approxfmation (2.14) we easily see, that the constants A and .I3 are connected with the 
total energy flux by the relation Wa B v A+-, zLR 

2aT,4 (3.14) 

which can be used to determine. the surface temperature of the sphere. 

4. Tomporrruro fiold norf the rurfrco of tho rphoro. Ea(3.2) 
gives the temperature distribution over the whole space I’ > a with the accuracy of up 

to the terms of the order of aa. 
On closer inspection we find that, in the region r - 0 the integral term in (3.2) is 

of the order of era when p < a, or of the order of au In c&z when p > cs. Therefore 
in the region r - a we can neglect the integral term in (3.2). obtaining the following 
expression for the temperature field with the accuracy of up to the order of small mag- 
nitudes 
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2 d2ra, p p=r~-A+- 1/F-- -.a2) (4.0 

When p is sufficiently small (we show in Section 6 that the inequality 4~2~2 < aaa) 
must hold). then the solution of (4.1) becomes asymptotic already in the region where 
the error (which increases with increasing r) caused by neglecting the integral term of 

(3. Z), need not be taken into account. We can therefore demand that, for r s ~1 the 
solution of (4.1) should not contain any terms increasing exponentially whose appearance 

would be incons~tent with the requirement of a smooth transition of the solution of(4.1) 
into the solution (3.11) valid in the region r > a. 

The corresponding solution of (4.1) has the form 
03 

rcg= 
l 
acp,-2- (x- 

LP s f 
Za) exp (-~ypl+xp (-7) + 

a 

+ $~(x--)/2’--a=)exp (-y)dx 
from which we have 4 

rtp = x12amA / r when r>p 

(4.4) 

In the limit as 1~ -+ 0 , the temperature distribution undergoes a jump. When l& has 
a finite value (l& < a) , the temperature distribution varies sharply within the region 

a 

0. 

w CL. At the distances r - a > p , the temperature dist~bution is given by 

If u > a. wehave 

(4.(i) 

Whenrka. the temperature field differs little from that obtained in the absence 
of radiation and in this case we can assume that B = cp,. 

6. Radirtfon equillbrtum, Equation defining the temperature around the 
radiating sphere for a-medium with the vanishing small molecular heat transfer coeffi- 
cient $L%c~ 4 ECUZ , can be obtained either from the general equation (1.8), or from 
(3.2) by putting x = 0 

q = A (r -VP - a”) ear t (5.1) 

Unlike (3.2). Eq. (5.1) is valid for any value of rp, , provided that x = 0. 
Solution (3.11) of (3.2) obtained earlier for the region I” 4 a., becomes 

rep = T yA (3 + r 
exp (-urs) ds 

11 + l/,s? In (s - 1) / (s + I)]* -i- 1/.&%* (5.2) 

asp-+-O. I 

At the distances from the sphere which are large compared with the path length of 
the photons (ar > 1) we have, in accordance with (3,112). 
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w= ‘/z aa2A (3 + (ccr)-if(1/2 In 2ar - 1)2 + l/q n21-~ exp (-ar)} (5.3) 

III the region a 4 t 4 l/a , Formula (5.2) simplifies since the function preceding 
the exponential term can be replaced by unity 

rep = s/s cUrsA I3 + (ar)-11 = ‘I9 au / r (5.4) 
This agrees, with the temperature distribution (4.3) near the surface of the sphere, pro- 

vided that r >> cc. 

Using (5.4) we can easily obtain the following estimate : 

Thus. when ar < 1 , then the solution of (5.1) has the form 

rep = A (V-v-) (5.5) 
up to the surface of the sphere r = a and with the accuracy of up to aa . 

Both results, (5.5) and (5.4) are in complete accord. We can also construct the inter- 

polation equation rep = A [(r - f/13- a”) exp (-ur) + 3/2aa21 
(5.6) 

valid for the regions a ( r -s$ l/a, r + l/a. 
The limit temperature of the medium as r --t a , in accordance with (5.5). and with 

the accuracy of up to the order of au, is defined by 

lim rp = afl ;i= acp, (5.7) 
r-MI 

and this confirms the temperature jump occurring at the surface of the sphere, since we 
have by (3.2) and (3.14) and with the accuracy of up to the order of aa 

Indeed,(5.5) shows that the principal contribution towards the integral appearing in 

(5.8) is made by the region p - a. 
Thus the temperature undergoes a jump at the surface of the sphere, and its value is 

given by To4 - T .+04 = (1 - l/28) (To4 - Too*) (5.9) 

6. Temperature field and the radiant energy flux when p2a24i, 
g 3 a. If ar < 1 and r > p, then the condition l~%,sss 4 1 holds in the region, 
in which the integrand function in (3.11) is different from zero and we have 

Y = ‘/2 (a/r>(aA + 2p2wa) (6-i) 

consequently, for the whole region r > 11 the temperature field is given by the follow- 

ing interpolation formula : 

rep = 3/2 aa (aA + 2p2a(pa) [I + l/3 (ar)-i exp (-w)l (6.2) 
If rv p, then the small neighborhood of the maximum point of the integrand func- 

tion makes the essential contribution towards Y, and we have, with the accuracy of up 
to the terms of the order of pa, 
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Comparing it with the solution (4.2) for f - a we see, that (6.3) is also valid in this 

region. 
From (3.2), (6.2) and (6.3) it follows that A = r/s ecp, to within the terms of the 

order of au In aa. 
By (3.14) the total energy flux density is 

S,, = ES $(Ta4 - Tco4) + ; (T, - T,) (r,A) 

We can determine the radiant energy flux using the expression for the total energy flux 

incor~ra~g both, radiant and molecular energy transfer terms, For this purpose we must 
compute the temperature gradient first, and then use (6.4) to obtain 

S ==so (1 - 2Psc+) (IX) 

forp < r < l/u. 
We see that S zz S,,, i. e. the total energy flux, as in the region ar i;> I, is basically 

defined by the radiation. When r 6 11, then analogous computations with the aid of 
(6.3) yield the following result : 

s = s, 1- (6.6) 

which shows that the contributions of the radiant and molecular flux are independent of 
distance over the whole region t < II , We see from (6.6) and (6.5) that the contribu- 
tion of the molecular energy transfer flux to the total flux decreases, in the region r - p 
with increasing r . When r > 1-1 , then the total energy flux is defined by the radiation 
only. The expression $.ksa/&a is a parameter defining the relative importance of the 
radiant and the molecular transfer in the region r .& p , When this parameter is con- 

siderably less than unity, the molecular energy transfer can be neglected everywhere. 
If 41t%@ > 1, then the energy transfer is purely molecular in the region r (( > 
the mechanism however becomes radiant when f 9 lo . Variation in the radiant energy 

flux at the distances r - p < i/a is governed by the luminosity of the sphere. 

7, Temperature and the rrdirnt energy flux when p2a2S 1. At 
large distances from the sphere (ar > 1) the proportion of the radiant and molecular 
energy fluxes is defined, as seen from (2.13), by the value of the coefficient 3p2a2. 

If pb2 > 1, then, by (3.11). the integral becomes 

9’ = (trcp,/~q& @> (7.4) 

with the accuracy of up to order of au and for any value of r except those within the 

region In ar > yZa2. 
Temperature distribution over the whole space is given by 

rep =q* 14 --‘/a (~ra)-~ + (~z)-*E4 (at)1 (7.2) 

according to which we have 

rg ‘=“a90 U - ar/6p2az) when ur eg i (7.3) 

ra, =agt, Ii - l/a (pa)- 2 + I.l-z(+4r-i exp (-ar)] when ar > 1 

Molecular energy flux density is 
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s dT x=-~F=~(TO- w[i-&+ (7.4) 

At the large distances where the diffusion approximation is valid for ~‘a* > 1 we 
can use the expression for Sx_at w > 1 to obtain the total energy flux density 

(7.5) 

This Implies that the radiant energy flux density over the whole space Is 

S - Ed (ar) - ar& (cw) 
3 

(T, - T,) (7.6) 

We see here that ln the region ar 4 1 the influence of the molecular mode of the 
energy transfer is dominant and the radiant energy flux is practically absent. When 
ar > 1 , the flux tends exponentially to the limit defined by the radiant tranfer appro- 
ximation, and Is a small quantity of the order of (pa)+,. 

The authors express their gratitude to V. G. Levlch for assessment of the results. 
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The problem of pressure due to an axisymmetric ring-shaped die on an elastic half-space 
and layer was examined in p and 21. In these papers the boundary value problem of the 
theory of elasticity Is reduced to a linear integral equation of the second kind with a 
kernel given by a set of infinite measure. In 133 the problem of pressure due to a ring- 
shaped die on an elastic layer is reduced to a Predholm integral equation of the second 
kind by means of approximate subsdhldon of the kernel of the integral equation of the 
first kind. Normal stresses under the die are expressed through the derivative of the solu- 
don of this equation. In papers 14 and 51 the problem of pressure due to an axlsymmetric 
ring-shaped die on a half-space was solved by approximate methods. 

In this paper the axisymmetric problem of pressure due to a ring-shaped die on an 
infinite elastic layer and half-space is solved and also the problem of torsion of the elas- 
tic layer and half-space under the Influence of a coupled rigid die. In addition to the 
die, the half-space and layer are under the influence of a steady-state temperature field. 
The solution of boundary value problems are presented in the form of integrals which 


